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A Software Package for Sequential Quadratic Programming

Summary

The algorithmic principles of Sequential Quadratic Programming arc summarized and
motivated. The basic algorithms of Quadratic Programming (primal, primal/dual and
dual approach) arc given. The parameters of the Software Package are described.

Nichtlineare Optimierung, quadratische Optimierung, Software zur Sequentiellen Qua-
dratischen Optimierung

Ein Software-Paket zur Sequentiellen Quadratischen Optimierung

Ubersicht

Algorithmische Prinzipien zur Sequentiellen Quadratischen Optimierung werden
7usammenfassend dargestellt und motiviert. Die Kernalgorithmen der Quadratischen
Optimierung (primaler, primal/dualer und dualer Ansatz) werden erliutert. Die
Parameter des Software-Pakets werden beschrieben.
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Chapter 1

Introduction

Mathematical programming is a powerful aid in designing feedforward and feedback
controllers for nonlinear dynamic systems. In the first case the inherent optimal
control problem is transformed to a constrained nonlincar programming problem by
discretising the control function and solving sequences of initial valuc problems [23].
In the second case various control specifications are defined by a performance vector
which will be minimized with respect (o the controller paramaters within some given
controller structure [40] . For the resulting vector programming problem PARETO-
optimal parameters are found by a minmax strategy. The minmax problem is solved
as an inequality-constrained nonlinear program {15] . These are only two examples
within a wide variety of practical applications in complex industrial environments;
other applicalions can be found in large-scale circuit design [30] or in the field of
structural mechanics [20], for instance.

All ol the above problem classes require an efficient and robust software package
for the solution of the general consirained nonlinear optimization problemn. The
extensive tesis of SCIITTKOWSKI [36) on a wide range of lest examples [21] have
shown that sequential quadratic programming is the most officient method (in terms
of function evaluations and computer time) to solve Lthe above problem.

This report describes a software package developed and implemented at the
DEVLR for the solution of optimizalion problems in control system analysis and
design. This package uses several different subroniines for the calculation of the
search direction (quadratic subproblem) according to cither primal or dual meth-
ods.

The report is organized as follows. In chapler 2 the iterative algorithm is
described and motivated. In chapler 3 three different approaches to solve the
quadratic subproblem are summarized, a primal method based on the original
problem formulation a primal/dual method based on a Lransformation into a con-
strained least squares problem, and a dual method based on an active set strategy
from the outside of the feasible domain. In appendix A the software organization
is explained. A computiational comparison will be reported in the near future.



Chapter 2

Sequential Quadratic
Programming

2.1 The Problem
2.1.1 Problem NLP

Sequential quadratic programming is known as to be Lthe most efficient computa-
tional method to sulve the general nonlincar programming problem

(NLP):  min f(=) (2.1)
subjeci to
gi{=)=0, j=1,.. m, (2.2)
g:(z)20, j=m.+1,...,m, (2.3)
7 <2 <2y, (2.4)

for a local minimum, where the problem functions f : " — R' and g: R - R™
are assumed Lo be conlinuously differentiable and to have no specific structure. The
size of Lthe problem should only be moderately large, 1 < n < 200, for instance,
where m is Lhe number of active constraints at the solulion,

2.1.2 Minimax Problem

The minimax problem

(MINIMAX): "él.ln.r}' max ¢i(z), 1:=1{I,...,1}, (2.5}
subject to
QJ(:C) = 0; i=1, y e (2 6)
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g®@)>0, j=m.+1,...,m, (2.7)

T £ T < Ty, (28)

with ¢ : R" — R sufficiently smooth, can be numerically reduced to prob-
lein (NLP) by introducing an extra variable 2,4y as an npper bound on the el-

ememls of the veclor ¢. This upper bound will then be minimized subjech to
¢" S Ty, Vi € L.

2.1.3 Notation

The following notation will be used: g(z) indicates those I components of the in-
equality constraints which are aclive, i.e. salisfied as cqualilics, at the solution.
Similarly, let 4;(z) := V§!(2), and G;(z) == V2g;(z). The matrix A(z) is com-
posed of the m columns a;{z),j = 1,...,m, and a similar nolation holds for A(z).

Throughoul the paper all gradient vectors are row veetors and all other veclors
are column veclors; ||| is used to denote their Enklidian vector norm /3 23, || M||
is the corresponding induced matrix norm, max(||Mz|| : ||#]] = 1). The machine
precision is denoted by €.

2.2 The Basic Algorithm

Problem {NLP) will be solved iteralively; slarting with a given vector of parameters
z% the (k 4+ 1)* iterate z*** will be obtained from z* by the step

2= g* ot of X, (2.9}

where d* is the scarch dircction within the &' siep and o* is the step length.

2.2.1 The Search Direction

The search direction is determined by a quadratic programming subproblem, which
is formulaled by a quadratic approximation of the Lacranag function of problem
(NLP)

Be ) = 1(#) = 5 hgytr) (2.10)

and a linear approximation of the constraints g;. This prablem is of the following
standard form of quadratic programming:

. N A -k
(QP): 52}{}'20! B*d + V f(x")d (2.11)
subject to
Vgi(z*)d + g;(z*) =0, j=1,...,m,, (2.12)
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Vgi(a")d + g;(z*) 20, j=m.+1,...,m. (2.13)

Nole again that in the above formulation the gradients ¥ f(z) and Vg;(z) are row
vectors.
The choice of the above scarch dircction has been proposed by WiLson [42]
already in 1963, with
B :=V2_I(z,\). (2.14)

2.2.2 The Step Size

It will be demonstrated in section 2.2 Lhat this direciion has a strong analogy to the
search direction in NEWTON’s method for solving systems of nonlinear equations.
Like in NEWTON’s melhod this direction is optimal with stepsize @ = 1 for general
nonlinear functions near a local optimum; but the stepsize has to be modified for
vectors z* far from the optimum, to guarantec global convergence of the method.

HaN [19] has proven that a one-dimensional minimization of the non-differenti-
able exact penalty funciion

Hoi0)= 1)+ S plasta)l + > o)l (2.15

Jj=metl
with |g;(2)|- = Imin(0, gi(=)], as a merit function ¢ : R' — R!
p(a} = ¢(a* + ad"), (2.16)

with z* and d* fixed, leads to a stepsize o guarantecing global convergence for
values of Lthe penalty parameters g; greater than some lower bound. PowgLL [31]
proposed to update the penally parameters according to

1, _ .
g = mGZ(E(Qj +|/“J'D7 |"J'|)) J=Hh...,m, (217)»

where ; denotes the LAGRANGE multiplier of the j'" constraint in the quadratic
subproblem and pj is the j*" penalty parameter of the previous iteralion, slarting
with some g? = 0, for instance.

To overcome possible difficulties in the line search of the non-differentiable
merit function ScTTKOWSKI [21] substituted equaiion (2.17) by the differentiable
augmented LAGRANGE function

1) = S0 (7) = eiss(a))

_ i {Ajgj(m)—ée;gj(:)z, il g;(z) < Aj/e;, (2.18)

132/, .
2’\_;'/9]; olherwise,

®(z, A; 0)

y=m,+1

a formmla first introduced by ROCKAFELLAR [35] within the context of constrained
optimization.
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2.2.3 Inconsistent Constraints

It might be possible that the constraints in subproblem (QP) become inconsistent
in the course of the iterations, although those of the ariginal problem (NLP) are
solvable. In order to overcome this difficulty, an additional variable § is introduced
into the quadratic subproblem as in PowELL [31], leading to an (n+1)-dimensional
subproblem wilh consislent constraints:

min %dTB"d + Vi(z*)d + %p’*(s‘*)y (2.19)
subject to

Vg;(z*)d + 65 g;(e*) =0, j=1,...,m,, (2.20)
Vgi(z*)d + 85g;(z*) >0, j=m, +1,...,m. (2.21)
0<6* <1, (2.22)

where 8 has the value

oo (ak

o= {  heh > (229

and it is made as large as possible, subject to the condition (2.22). Obviously
the initial direction (d°,6%)T = (0,...,0,1)7 satisfies the constraints (2.21-2.22),
therefore it can be used as starling value for the augmented quadratic subproblem.

2.2.4 Update of the B—-Matrix

It is a crucial requirement for the computational efficicncy in practical applications
of sequential quadratic programming not to evaluic the malrix B* as in equa-
tion (2.14) in every iteration, but to use only first-order informalion to approximate
the HEssE—matrix of the LAGRANGE-Tunclion. This has been customary for uncon-
strained optimization since a long time, known as quasi- NEwTON methods [10].
A very popular update has become the BFGS—formula. Reference [8) gives a com-
prehensive overview on numerical methods for unconsirained optimization and the
closely rclated field of nonlinear equations.

The analogue formula for the constrained case has been developed by Pow-
ELL [31]. The theoretical justifications of this so-called variable metric update can
be found in reference [32]. The difficulty in constrained optimization is, that unlike
in unconstrained optimization B* need not remain positive definite for a positive
definite initial estimate. Therefore POWELL proposed the following modification:

qk(qk)T Bksk(sk)’l'Bk

k+1 ._ pk
B =8B +(qk)T_.,k - (k)T Bkgk

(2.24)

with
&% = phtl gk = kgt (2.25)
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and ‘
= 05k 4 (1 — 8%) B, (2.26)
where 5* is the difference in gra.dlcnt.s of the LAGRANGFE [unction
¥ o= VL LR AR — VL (2R AR, (2.27)

and 8% is chosen as

" ]_, il (Bk)il",’k > (}_2(3")7‘ Hksk,
g = 08T ik b : (2.28)
EYT HEE(GE) Tk Qf-hCrWlS(:,
which guarantees the condition
(s*)7q* = 0.2(s*)" B*s*, (2.29)

which holds B**! positive definite within the linear manifold defined by the tangent
plancs o aclive constraints at a**'. 'The muliipliers X are taken to be those of
the quadratic subproblem at it’s solution. The choice of conditions (2.25 - 2.28)
guaraniees the updated B-madtrix (2.24) to remain positive definite for an arbitrary
initial estimate of this matrix.

It is important to use for both the above rank-one updates {2.24) recurrence
formulae which need only O(n?) flops. One of these is the composite t-method of
Frercurr and PowELL described in [9], see also [13]. This melhod updates the
faclors

LEDN(I*)Y =: B* (2.30)

instead of B* itself, where [ = [1;,...,1,] is & lower (riangular matrix with unit
diagonal entries and D = diag(d;,...,d,) is a diagonal matrix. Of course, the
matrix D does not oceur explicitely, their diagonal clements are stored in the
diagonal elements of L. Suppose the factors of the following modified matrix B

LDiT = =B+ozz' (2.31)

AT

I
“M" a_-,-,

are soughi, then the following algorithrn implements the

composite-t method: (2.32)

(1) if & = 0 then terminate;
else set {; := 1/¢ and 2V := 2,
(2) if ¢ > 0 then go to (6),
(3) else solve Lv = z ta get v,
(4)fori=1,... ,ndoity =1 +v%/d,
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(5) if any i;4) > 0 then recompute #;4:
e.g. if t;4; > 0 then sel ;4 == ¢/,
for i =],] - l,,l do f,,' = i,'.,.l - 11'-2/ri,~,
(6)fori=1,...,n do
v = z‘-" ,
if ¢ > § then iy =1+ ‘U'?/d"7
o = L /1,
li; = wd;,
if ¢ = n then stop;
Bi=(vi/d:) /s,
2040 = 20 oy,
if o; > 4 then I = (Li/bis )l + Bizl?,

else I; = I; + fi2ti+D),

2.2.5 Least Squares Subproblems

Scurrrkowski [38] has proposed Lo replace the quadralic programming subprob-
lem (QP) by a lincar least squares subpreblem, using a stable LD LT-faclorizalion
of the matrix B:

(LSEI): min [[(DF¥2R d + (D5 2 (17) T £ (25)) (2.33)

subject to
Vgi(z5Yd + gi(z*)y =0, j=1,...,m., (2.34)
Vgi(z¥)d 4 g;(2*) >0, j=m, +1....,m. (2.35)

This subproblemn can be solved with the linear least squares software of LAWSON
and Hanson [26).

2.3 Motivation of SQP Methods

2.3.1 Optimality Conditions

SQP-based methods are motivated as methods analog to NEwToN’s metihod for
solving systems of nonlinear equations. Firsi we necd the KUuanN-TUCKER condi-
tions for problem (QP), a set, of nccessary optimality conditions [28,2]:

(KT): V.IL(z,)) =0, (2.36)
gi(z) =0, j=1,...,m,, (2.37)
gi(z) 20, j=m.+1,...,m, (2.38)
Ai(z) 20, j=m+1,...,m, (2.39)
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gi()A(z) =0, j=m.+1,...,m, (2.40)

To starl with the arguments we consider equalily-constrained problems (2.1-2.2)
first, inequality constrained problems are then treaicd by introducing the notion
of aclive constraint sets.

From the the necessary conditions of the equalily-consirained problem it follows
that the condition
V=) -A{=z)A Y _ [0
e(z,A) 1= ( o(2) =1 (2.41)
be satisfied, where
Vai(x)
AT (z) = : (2.42)
V.’)’m:(m) ‘

is the n x m, JACOBI malrix of the equality constrainis, which is assumed to be of
{ull rank at the corresponding =.

Now NEWTON's method is applied to the solution of the system of n + m,
(usually nonlinear) equations (2.41) in the n 4+ m, unknowns (z, A)7. Let (z*, A)T
be the &*" iterate of the NEWTON process, which is defined by

Ve(z*, %) ( N ) = —e(z* 3 (2.43)

(;::1)=(§Z)+(§:), (2.44)
H(z* X)) —A(x*) )
A(mk)’r‘ 0

the Jacosian of e(z, A) with respect to (z, A)T within the k'* iteration, and

with

Ve(z*, A¥) = ( (2.45)

H(z", M) = VIf(a¥) = 3° Mgy(a*) (2.46)
1=l

the JTESSE matrix with respecl to z of the LAGRANGE funciion L(z,A). Explicitely
wrillen equations (2.43) and (2.44) become

(e ) (A= (U)o
g i= 2t d. (2.48)

Methods to solve equalion (2.47) based on certain matrix decomposition techniques
are given in reference [29]. Recent local convergence resulis can be obtained from
FoNTECILLA [12].
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2.3.2 Nonlinear Equations and Quadratic Programming

It can be verified by direct evaluation of (K'I') that the conditions (2.47) and (2.48)
are equivalent to the KunN-TUGKER conditions of the quadralic programming
problem with pure equality constraints (2.11-2.12):

mm ld B*d + v f(z*)d (2.49)

subject to

Vai(z*)d + g;(z*) =0, j=1,...,m,, (2.50)

with B* = H (2%, \¥),

This equivalence turns out {o be the molivation for Lhe choice of the scarch
direction (2.11-2.13). This is especially convenient in the inequalily constrained
case, where no practical implementation exisis o solve Lhe corresponding problem
(2.47-2.48).

2.3.3 Active Set Strategy

A complete solution of the equality-consirained quadratic progamming problem
(2.49-2.50) will be given in the next chapter. Here, a Lechnique for solving the
general QP-problem with inequalilies included will be presented in the context of
primal methods. The B-matrix will be assumed (o be positive definite throughout,
the slightly more complex case when the B-matrix is indefinite is treated by GILL
and MURRAY [14] and by BuncH and KAUFMAN [4].

First suppose a feasible ilerale z* is given, thai mncans a point satisfying the
constraints (2.12) and (2.13). If such a point is not available, it has to be provided
by a suitable starting procedure, e.g. a phase I methad of the simplex algorithm.
Now the active sel is an index set J* consisting of the indices of all say t* active
conslraints ai the point z*:

={i=1...,m}u{j=m.+1,...,mal(s*)d — ¢} = 0}. (2.51)

The inactive inequalities a] (z*)d — ¢* > 0 will be tempaorarily distegarded.
Now the equality constrained quadralic programming problem with active con-
strainls

. P O K
(EQP): ;2}{’1‘2‘1 B+ Vf(z")d (2.52)
subjecl to .
Vg;(zF)d + g;(z*) =0, j=1,..., (2.53)

must be solved; let the solution be (d*, A*)T. Next a step is taken into this direction

according to (2.9)

e*tl = o* 4 ok, (2.54)
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under the restrictions

[+ k) < J(2), (2.55)

and
ej~atzt e - :
ok < Gk = min J_a'jf_,:t_' if (z;‘(l" < 0 for some j ¢ ¥ (2.56)
+00, il afd* >0 forall j ¢ I*, .

Note that &* will have a positive value under tue conditions of (2.56), as index j
is nol within the active sel.

IFald* > 0, any positive step along @* will not violate inactive constraint i
On the other hand, il a;rd." < 0, there is a siep «; which aclivales constraint j:
¢; — af (2% + 0;d*) = 0. This is the reasoning behind condition (2.56).

As in unconstrained optimization this algorithm requires sufficient decrease of
the cosl function, stated in relation (2.55), as to prove il’s global convergence. For
further information see reference {15, pages 168-170).

Conditions 2.55 and 2.56 may leave the active sel unallered or may enlarge
it, according to whether o* < &* or o* k. As a third possibility the deletion
of a constraint has to be considered. This will he the case when the optimality
conditions, especially (2.39)

=

AE)20, j=m.+1,...,m, (2.57)

are not salisfied for the active inequality constrainis. I'his means that the aclive
sel is nolyel correch. The minimum of the cost function is sought in a subspace
of too small dimension. If the LAGRANGE rnultipliers of the current solution of
{2.52) and (2.53) are assumed to be sufficient accurale estimates, then condition
(2.57)can be used as a criterion Lo delete a binding conslraint, for instance thal
one with the smallest (negative) value

l=arg min(Aj(z) <0, j=m.+1....,m) (2.58)
j

This completes the discussion on active sct stratgics.




Chapter 3

Quadratic Programming
Algorithms

In this chapter three main algorithms for the quadratic programming core problem
of the sequential quadratic programming method are presented. First a primal
method based on the direct formulation of the problem is given, followed by a pri-
mal/dual approch based on a leasl squares transformaltion, lasi. a recently published
dual method is shown, which finds the aclive sct beginning from an unconstrained
problem. No method based on linear complementarity problems is given in this
comparison, instead we refer to [7].

A self-conlained derivation of the basic structure of each algorithm is given. The
respeclive updating techniques for changing aclive constraini sels can be found in
the references.

3.1 A Primal Method

Primal methods can be characterized as methods which find the solution from the
interior of the set of feasible points. Accordingly a step to find a feasible point (e.g.
phase one of the simplex method) has to be done before starting the minimization
process.

In this section we confine ourselves to inequality constrained preblems not to
overburden the notation. These problems are solved by active set strategies and it is
obvious that equality constraints can easily be handled within this framework. The
direct formulation of the inequalily constrained quadratic programming problem

(IQP) can be stated as
(IQP): ,‘2}{.‘. F(z) = %zTG:: +hTz (3.1)

subject to
ATz > b, (3.2)
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where G is a constani and symmelric n x n matrix, A" is an m X n matrix, which
is assumed to be of full rank, A an n—vector, and b an m—vecior.

In the case of a positive-definite matrix G the following necessary and sufficient
conditions hold for z* to be a unique (global) solution of (QP):

L. the vector z* is feasible,

2. there exists a unique sirictly posilive mulliplier {--vector A* such that

ATA" = g(z"), (3.3)

where g(z) = Gz + h is the gradient of #(z), and A*" is the 1 x n sub-malrix
of AT corresponding to the active consiraints al =",

With the introduction of an n x (n —t) matrix Z7, the columns of which form a
basis for the set of vectors orthogonal to the rows of A*7, that means A*7Z* =0,
condition (3.3) is cquivalent to Z*Tg(z*) = 0. The vector Z7g(x) will be called
the projected gradient of ' at x, and the matrix Z7 (77 will be called the projected
HESSIAN malriz.

In the case of a gencral matrix G a posilive-definite matrix Z*TGZ” is a sccond-
order sufficiency condilion for z* lo be a solution of (QP).

3.1.1 Solution Method

If z* is a solution of {((JP) it is also a solution of the cquality-constrained quadratic
program (EQP): :

(EQP): ;tel}tr}‘ F(z) = ‘]E'mr(}‘:n 4 h'x (3.4)
subject to
ATz = b (3.9)

Therefore, a solution of problem (EQP) combined with ihe aclive sel siralegy
described above yiclds a solution of the general problem (QP). As the pair (A*T,5")
corresponding Lo the correct active set at the solution x” is not known in advance, an
estimate (A®)T, 58 is used instead at the k™ iteration of the numerical algorithm
which solves problem (QP).

To solve problem (EQP) iteratively, let z* be a feasible vector with the cor-
responding matrix of active constraints A* and veclor of right-hand sides b*. A
minimum of F'(z) satisfying the constraints (A*)T = b* is sought starling from z*
into the direclion p*. Substituting =* + p into problam (QP) gives the following
quadralic progamming sub-problem in terms of the vector p:

.1
min EpTGp +(Gz* + h)Tp (3.6)
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suhject Lo
(A"YTp = 0. (8.7

Introduce the relation
o= 2%k (3.8)

for some (n — {*) vector p%. Therefore linear combinations of the columns of Z
(a basis of the set of all vectors orthogonal to the rows of A7) form the sei of all
feasible directions for the solution of problem (EQI).

Substituting equation (3.8) inlo equations (3.6) and (3.7) the following equiva-
lent unconstrained problem in terms of the (n — {*) veclor pz is obtained

. 1 . "
min Ep;(Zk)TGZJ'pz + (£G4 1Y pz, (3.9)
pzefn-t

the solution p% of which can be obtained from solving the lollowing linear system

of equations:
(Z8TGZ*pl + (25 (Gz* + h) = 0. {3.10)

The optimal direction p* for problem (EQP) is recovered by inserting the result of
equation (3.10) into equation (3.8). The corresponding estimate of the LAGRANGE
multiplier vector A¥ will be calculated from equalion (3.3)

X = (ARGt + ), (3.41)

where (A*)* is the psendo-inverse of A*.

3.1.2 Numerical Implementation

Three main problems arise in the numerical solution of the direct quadratic pro-
gramming problem:

I. the representation of the matrix Z in terms of the matrix A7,

2. the efficient computation of the pseudo-inverse A%,
3. and an eflective solution of the linear system (3.10).

To deal with the first two items, the matrix A* is factorized into the product
I k
Q* Ak = ( ' ) , (3.12)

by HousEHOLDER-transformations, where @* is an orthogonal matrix and R* is
a non-singular upper triangular matrix. The mairix @* is partitioned into two
submatrices, the t* x n matrix @% and the (r — t*) x n matrix Q% such that

¢=(8§) 613
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It has been shown [14] that the last (n — £*) rows of the mafrix @* are orthogonal
{0 the rows of the matrix (A*)T such that the rows of % can be used as a repre-
sentation for the columns of Z*. The ovder of the rows is not important; and from
computational efficiency in the updaling process within (he active-set strategy the
reverse row-order of the matrix Q% : Z* = (Q%)"7, where T is the t* x t* unit
maltrix with reversely ordered columns.

A numerically stable and efficient realization of the psendo-inverse (A*)* of the
matrix A* can also be obtained from the factors of A¥ namely

(A*)r = (B4 Q. (3.14)

This result is due to BUSINGER and GoLus {5], and it has thc advantage that
the condilion of the problem is not changed as in other solution methods of the
inherent “least-squares” problem.

The third computational problem identified above is the efficient solution of the
positive-definite system of (n — t*¥) lincar equations (3.10). This is accomplished
by the following ‘square-root-free’ CHOLESKY factorization of the projected HESSE
matrix

(Z9TGZFph = LF D (IY), (3.15)
with L* a unit lower-triangular matrix and D* a diagonal matrix. It is very im-
portanl not Lo deteriorate the factorized problem compared to the initial problem,
thal means the condition number of the former must not be worse than that of the
laiter: x((Z*)TGZ*) < k(G). The choice of Z* as described above guarantees this
condition [14].

As constraints enter or leave the active set the factors L, D, Q and R need not
be computed ab initio for every iteration bul can be modified in a numerically
stable way. ‘This modification is performed in a number of steps which is usually
one order less than that of the complete new build-up. The details can be found
in reference (14].

3.2 A Primal/Dual method

3.2.1 Problem Equivalence
It can be shown that the general quadratic programming problem (QP)

N T
(QP): min oz Ge+h'z (3.16)
subject to
ATz > b, (3.17)
and
CTz =d, (3.18)
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is equivalent to the following lincar least squares fomulation (LSEI)

e 2
(LSEL):  rmin of|Fz — /| . (3.19)
subject Lo
ATz > b, (3.20)
and
CTe =d. (3.21)

This problem has been extensively treated by Lawson and HAnson [26]. In the
context of Sequential Quadratic Programming (SQP) methods, square matrices
£ with dimension n and with special structure are considered. The matrices A7
and CT are of dimension (m — m.} x n and m, x n, respectively. All matrices
are assumed to be of full rank. This assumption does not constrain the generality
of the method; it has been introduced to relax the derivalion from the necessary
refinements in case of rank deficiencies.

3.2.2 Problem Transformation

According to LAWSON and HANSON [25] a transformation of the variables is intro-
duced by an orthogonal basis K of the nullspace of C7:

z;K(“l) Me (3.22)

T3 n—me
where the n x n orthogonal matrix K triangularizes the matrix CT from the right:

n m, n—m,

mo (Y G
m—-m, AT A] Az

Then &, is determined as the solution of the lower triangnlar system
Cizy =d, (3.24)

and 2; is the solution of the following inequality-constrained least squares problem
(LSI)
(LSI): _min_ ||Boz; - (f — Eud) (3.25)

subject to
A2=1 Z b - A‘léb (326)
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Problem (LSI) is now transformed into a least distance problem (LDP). First the
QR factors of the n x (n ~ m.) matrix Fy

P=0 ( ;’f) (3.27)

are determined, with ¢ an n x n orthogonal matrix and R an upper triangular
nonsingular matrix. Then a further change of variables is introduced

y = Rey — f, (3.28)

with f = QT(f — £, £,), where the n x (n — m,) matrix Q" is composed of the first
n x (n — m,) columns of the matrix . Problem (LDTP) can now be formulated as

(LDP):  min (7] (3.29)
subject to
ARy > b— (Ad + AR ). (3.30)

“The solution # of problem (LLDP) is introduced into equation (3.28) from which the
solution 2, of problem (LSI) is obtained, which in turn is put into equation (3.22)
to give the solution z of the original problem (LSEI).

Problem (LDP) has a non-negative least squares problem (NNLS)

(NNLS): min{|Gz — Al (3.31)

subject to
220 (3.32)

as its dual problem, where the (n+ 1) x m matrix G is composed of the constraint
malrix and the right hand side of equation (3.30) and the (n + 1) vector k consists
of n leading zeros followed by a trailing one, & = (0,...,0,1)7. This observation
has been stated by CLINE [6].

From the solution # of the dual problem (NNLS) and its residual r ;== GZ — A
the solution § of problem (L.DP) is obtained by ithe relation

Vi=riftes1, t=1,...,n—m, (3.33)
and the corresponding LAGRANGE multipliers A of problem (LDP) are
A] = —uj/r,,.,.,, j = 1,...,?71, (334)

where the vector u is the multiplier vector of problem (NNLS).
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3.3 Dual Quadratic Programming

3.3.1 The Problem

In this section a very efficient dual quadratic programming algorithm due to GoLp-
FARD and IDNANI [17,34,41] Lo solve the following prohlem

i ._£ T T 4
min F(z) := 2® Gz +h'z (3.35)

subject to

c(z) = ATz > b, (3.36)

will be described, which has several advantegeous fealures such as no initial feasible
point necessity. The veclor ¢ may include genuine equalily constraints. Their
explicit treatment is ommitted here in order to simplily the presentation.

The algorithm is also of the active st type, but instead of finding a local
minimizer from the interior of the feasible domain, this method approaches the
minimum from the exterior. To be more specific, defining the index set J C
M := {1,...,m}, where m is the total number of constraints in cqualion (3.36),
a sequence of subproblems P(J) is considered, starting with P(@), where @ is the
empty set. If the solution z of a subproblem I'(J) lies on some lincarly independent
set of active constraints indexed by K C J, the pair (z, K) will be called an S-pair.
The sequence of subproblems is constructed such thal for two successive S-pairs
(=, K) and (z*, K*), say,

F(z) < F(z")

1s valid.

To describe the dual algorithm in detail, some notation will be necessary. The
malrix of normal vectors of the active constraints will be denoted by A with its
index set K and dim(K) =: k. K* will be the index sel of active constraints
augmented by the index j € M\ K, while a proper delction of one element from K
results in K~. The matrices A* and A~ correspond to K+ and K, respectively.
The vector a* will indicate the normal vector a; added to A to give A* and a—
will be the column vector deleted from A to give A=, For 4 being of full rank its
MoORE-PENROSE inverse is

A = (ATGTLA)TATG. (3.37)
The inverse reduced Hessian malrix of F in the linear manifold defined by A is
H=G'\I-AA)=G"' = G A(ATG™ )1 ATG. (3.38)

The multipliers ¢ = A*a* will be denoted as infeasibility multipliers.
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3.3.2 Optimality Conditions

With this notation necessary and suflicient conditions for P(J) to be optimal can
be stated. For a vector & in the (n —k) dimensional manifold M = {z € R" | aTz =
bi,i € K} with the corresponding gradient VF{(z)} =: g(¢) = G& + k of F(z} al &
the minimum of F over M is obtained at

5 =i — Hg(s). (3.39)

If for Lagrange multipliers A(#) > 0 the relation

9(2) = AA(2) (3.40)
holds, then the vector Z is an optimal solution of P(K) with
Mz) = A"g(z) > 0 (3.41)
and
Hg(z} =0. (3.42)

3.3.3 The Algorithm
Now, the dual algorithm (DQP) can be implemented in the following steps:

1. Initialize:
set k=0and K = @,
z:= -G 'hand H :=G,
unconstrained minimum of F(z) = 1pTz.

2. Choose a violated constraint:
compute ci(z), Vie M\ K,
fV:={ieM\K|c(z)<0}=0
then stop, solution is feasible and optimal;
else choose smallest j € V' such that

. . T _ 3.
J.—n.rgl;%l‘p{alz b < 0}

and set
a*:=a; and At := (3)

If k=0 then set A:=0and K+ = K U {j}.
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3. Check feasibility and determine step:

{(a) determine slep direction:
primal space direction: p = Ha*
and if £ > 0 then negative dual space dircction: ¢ = A*a*,

{(b) compute slep length:

i. maximum step {; in dual space withoul violating dual feasibility:
ifg < 0or k=0 then set ¢, = o0

SEHRD

'

else sel 1, : min{
i3

q:>0
IEK

ii. minimum step 1, in primal space such thai j* constraint becomes

feasible:
if |p} = 0 then set {; ;== 00
else set 1y := —f,":{f}

iii. step length {:
set ¢ := min(i, 15).

4. Determine new S-pair and lake step:

(a) no step in primal or dual space:

if ¢ = co then stop, subproblem P(K*) and hence (QP) are infeasible;

(b) step in dual space:
if {2 = 0o then set A1 := At +i('l"'), and drop constraint {;
Le. set K := K\ {{}, and k:=k — 1, updaic # and A%,
go to step 3;

(c) step in primal and dual space:
set & ==z + ip,
At = At +t(i;),
F=Fr+ tpTa*(ét + A1),
if { = {; then set A := A,
and add constraint j;
ie. set K := KU{j}, and k:=k+ 1, update i and A%,
go to step 2;
if # =1, then drop constraint /
ie. set K = K\ {{}, and k := k — 1, updaic H and A4~
go to step 3.

This finishes the algorithm (DQP).
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Appendix A
Subroutine SQP

A.1 Implementation

The methods described in chapters 2 and 3 have been implemented in a subroutine
SQP (in the RASP-library [18] this is subroutine RPSQP1). SQP is the header
subroutine which initializes addresses for workspace, checks input parameters and
calls SQPBDY, in which the Sequential Quadratic Programming algorithm of chap-
ter 2 is programmed. SQPBDY determines search direction, step size, updates the
B-matrix and calls Quadratic Programming solvers.

Three alternatives are possible. They depend on the problem to be solved,
especially the number of constraints that are active af. the solution. The primal
method considered is QPSOL of Stanford Optimization Laboratory [16]. This
program is a licensed software producl and can be ohtained from the aunthors
for a nominal fee. The primal/dual method considercd is LSEI a modification
of the public domain lcast squares software of LaAwsonN and HansoN [26]. The
modification concerns a software frame for the ideas in chapters 20 and 23 of
[26, pages 135-139, 167-169] and the computation of L.AGRANGE multipliers. The
dual method considered is a modification with respect Lo the introduction of lower
and upper bounds of POWELLs implementation ZQPCVX {33] of the GoLDFARB-
IDNANI algorithm.

The line search is implemented in the subroutine LINMIN, a modification of
BRENTs algorithm localmin [3]. The B-matrix update implementation LDLT is a
modification of the FLETCHER-POWELL update MCI A contained in the Harwell
library {22].

A.2 Description

In this Appendix the numerical implementation ol Sequential Quadratic Program-
ming in the subroutine SQP is described in RASP format. [1].
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RASP3OPTS$CONSTRSRPSQP1$8
SUBROUTINE

Minimization of a scalar function subject to equalily & inequality constraints.

Procedure purpose:
This subroutine solves the general nonlinear programming problem

(NLP):  min f(z)

subject to
q;(:ﬂ):(], i=1...,m,

gJ(x)ZO! j=me+1,...,m,
T LT K Ty,

for a local minimum, where the problem functions f : B* — R! and g :

R®™ — R™ are assumed to be continuously differentiable and to have no

specific structure.

The algorithm implements the method of WiLsoN, HAN and POWELL with

a BFGS-update of the B-matrix and Ll-test function within the steplength

algorithm.

The search direction is determined by solving a quadratic subproblem. Three

alternatives can be used to do this: primal, primal/dual and dual methods.
Usage:

CALL RPSQP1 (M, MEQ, LA, N, X, XL, XU, ¥ ,C, G, A, ACC, ITR,

MODE, W, LW, JW, KW)

M : IN, INTEGER

M is the total number of constrainis, M > 0.
MEQ : IN, INTEGER

MEQ is the number of equalily constraints, MEQ > 0.
LA : IN, INTEGER

LA is the row dimension of the matrix A sloring the Jacobian
of the problem, LA > max(M, 1).

N : IN, INTEGER
N is the number of varibles, N > 1.
X() : IN, OUT, DOUBLE PRECISION (N)

X() stores the current iterate of the vector X with dim(X) = N,
on enlry X() must be ini!.ia,lizcd on exil X() stores the solution

vector X if MOD
XL() : IN, DOUBLE PRF‘CISION( }

XL() stores an N vector of lower bounds XL fo X.




&0

F,C,G,A

ACC

ITR

MODE

IV 90 71 P i &3 N

4328 LAY ARSI Y. OV U L LIV A OWd

IN, DOUBLE PRECISION (N)

XU{) stores an N vector of upper bounds XU to X.

IN, DOUBLE PRECISION

F is the value of the aobjective function.

IN, DOUBLE PRECISION (M)

C() stores the M vector C of constraints, equality constraints
(if any) first. dim(C()) > max(1, M).

IN, DOUBLE PRECISION (M)

G() stores the N vector G of partials of the objective function
with respect to the parameters X, dim(G()) > N.

IN, DOUBLE PRECISION (LA, N+1)

the LA x (N + 1) array A() stores the M x N matrix A of
constraint normals. Row dimension of A() is LA > max(1, M).
must all be set by the user before each call.

IN, DOUBLE PRECISION

|ACC| controls the final accuracy. If ACC < 0 an exact line-
search is performed within the subrouiine LINMIN, otherwise
an Armijo-type linesearch is used.

IN, OUT, INTEGER

On entry ITR prescribes the maximum number of iterations.

On exit ITR indicates the number of iterations.
IN, OUT, INTEGER

MODE controls calculation: reverse communication is used in
the sense that the program is firsi initialized by MODE = ¢;
then it is to be called repeatedly by the user until a RETURN
with MODE # |1} occurs. If MODE = -1 then gradients have
to be calculated, while with MODFE = 1 functions have to be
calculated. MODE must not be changed between subsequent

calls of subroutine SQP.
Description of MODE:

: gradient evaluation, (G & A)

on entry: initialization, (F, G, C & A)

on exit : required accuracy for solubion oblained
function evaluation, (F & C)

unbounded solution of QP-subproblem

positive directional derivative in linesearch
inequality constraints incompatible

cycling in LP or QP

more than 3333 iterations in LP or QP

more than ITR iterations in RPSQPI

input error, wrong dimensions

: working array W or JW too small, should be enlarged to the

integer that is relurned by MODE.
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w0

LW

IW()

Kw

IN, OUT, DOUBLE PRECISTON(LW)

W() is a one dimensional working space, the length LW of which
should be at least 2*N1*N1 + NI*N/2 + L1*N1 + 5*M + LA +
I*MAX(L,M) + 11, where N1 = N + 1. W must not be changed
between subsequent calls of SQP. On RETURN W(1),...,W(M)
contain the multipliers associated with the general constraints,
while W(M+1),..., W(M+N) store the bound multipliers.

IN, INTEGER

LW is the least dimension of the working array W.

IN, OUT, INTEGER(KW)

JW() is a one dimensional integer.working space, Lhe length KW
of which should be at least 2*N1 + M + MAX(N1,M) +11. JW
must not be changed between subsequent calls of SQP.

IN, INTEGER

KW is the lcast dimension of the working array JW,

Database Structure:
All 1/O work is managed via the parameter list.

Dialog:

Subroutine RPSQP1 requires no dialog.
File Input/Output:
Subroutine RPSQP1 requires no file 1/0.

Method:

The underlying method is described in detail in chapters 2 & 3.

Remarks:

The user has to provide Lthe following subroutines:

LDL(N,A,Z,0,W) : update of the LDL -factorization,

LINMIN(A,B,F,¢) : linesearch algorithm if exact = |,
QP(M,MEQ,LA,N,NC,C,D,A,B,XL,XUX,},.. .} :

solution of the quadratic subproblem,

together with a couple of subroutines from BLAS [27].

RPSQP1 is head subroutine for body subroutine RPSQP2 in which ithe al-
gorithm has been implemented.

Life Cycle:

1981 10 Dieter Kraft, DFVLR: coded
1984 12 Dieter Kraft, DFVLR: modified

1987 09 Dieter Kraft, DFVLR: adapted Lo RAST lormat
Packages required:

None.

Libraries required:

RASP'8T.

Example:

None.
kokkok
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