Degenerate Conic

Algorithms • Modern Fortran Programming • Orbital Mechanics

Sep 06, 2014

Object Oriented Runge-Kutta Module

Fortran 2003 was a significant update to Fortran 95 (probably something on the order of the update from C to C++). It brought Fortran into the modern computing world with the addition of object oriented programming features such as type extension and inheritance, polymorphism, dynamic type allocation, and type-bound procedures.

The following example shows an implementation of an object oriented class to perform numerical integration of a user-defined function using a Runge-Kutta method (in this case RK4). First, an abstract rk_class is defined, which is then extended to create the RK4 class by associating the deferred step method to rk4. Other RK classes could also be created in a similar manner. In order to use the class, it is only necessary to set n (the number of variables in the state vector) and f (the user-supplied derivative function), and then call the integrate method.

module rk_module

use, intrinsic :: iso_fortran_env, wp => real64 !double precision reals

implicit none

real(wp),parameter :: zero = 0.0_wp

!main integration class:  
type,abstract,public :: rk_class  
    private  
    !user specified number of variables:  
    integer :: n = 0  
    !user-specified derivative function:  
    procedure(deriv_func),pointer :: f => null()  
    contains  
    procedure,non_overridable,public :: integrate !main integration routine  
    procedure(step_func),deferred :: step !the step routine for the selected method  
end type rk_class

!extend the abstract class to create an RK4 method:  
! [all we need to do is set the step function]  
type,extends(rk_class),public :: rk4_class  
    contains  
    procedure :: step => rk4  
end type rk4_class

interface

    subroutine deriv_func(me,t,x,xdot) !derivative function  
    import :: rk_class,wp  
    implicit none  
    class(rk_class),intent(inout) :: me  
    real(wp),intent(in) :: t  
    real(wp),dimension(me%n),intent(in) :: x  
    real(wp),dimension(me%n),intent(out) :: xdot  
    end subroutine deriv_func

    subroutine step_func(me,t,x,h,xf) !rk step function  
    import :: rk_class,wp  
    implicit none  
    class(rk_class),intent(inout) :: me  
    real(wp),intent(in) :: t  
    real(wp),dimension(me%n),intent(in) :: x  
    real(wp),intent(in) :: h  
    real(wp),dimension(me%n),intent(out) :: xf  
    end subroutine step_func

end interface

contains

subroutine integrate(me,t0,x0,h,tf,xf)  
! main integration routine

implicit none

class(rk_class),intent(inout) :: me  
real(wp),intent(in) :: t0  
real(wp),dimension(me%n),intent(in) :: x0  
real(wp),intent(in) :: h  
real(wp),intent(in) :: tf  
real(wp),dimension(me%n),intent(out) :: xf

real(wp) :: t,dt,t2  
real(wp),dimension(me%n) :: x  
logical :: last

if (h==zero) then  
    xf = x0  
else

    t = t0  
    x = x0  
    dt = h  
    do  
        t2 = t + dt  
        last = ((dt>=zero .and. t2>=tf) .or. & !adjust last time step  
               (dt<zero .and. t2<=tf))         !  
        if (last) dt = tf-t                    !  
        call me%step(t,x,dt,xf)  
        if (last) exit  
        x = xf  
        t = t2  
    end do

end if

end subroutine integrate

subroutine rk4(me,t,x,h,xf)  
! Take one Runge Kutta 4 integration step: t -> t+h (x -> xf)

implicit none

class(rk4_class),intent(inout) :: me  
real(wp),intent(in) :: t  
real(wp),dimension(me%n),intent(in) :: x  
real(wp),intent(in) :: h  
real(wp),dimension(me%n),intent(out) :: xf

!local variables:  
real(wp),dimension(me%n) :: f1,f2,f3,f4  
real(wp) :: h2

!parameters:  
real(wp),parameter :: half = 0.5_wp  
real(wp),parameter :: six = 6.0_wp

h2 = half*h

call me%f(t,x,f1)  
call me%f(t+h2,x+h2*f1,f2)  
call me%f(t+h2,x+h2*f2,f3)  
call me%f(t+h,x+h*f3,f4)

xf = x + h*(f1+f2+f2+f3+f3+f4)/six

end subroutine rk4

end module rk_module  

An example use of this module follows. Here, we are integrating the equations of motion of a spacecraft in Earth orbit, using two-body assumptions: \(\ddot{\mathbf{r}} = -\frac{\mu}{r^3}\mathbf{r}\)

The rk4_class is extended to create a new spacecraft class, which contains the data required by the derivative routine (in this case, simply the central body gravitational parameter mu). A more complicated version could also include spherical harmonic gravity, solar radiation pressure, atmospheric drag, engine thrust, etc. Note that the select type statement is necessary in the derivative routine in order to access the data from the extended type.

program main

use rk_module

!spacecraft propagation type:  
! extend the rk class to include data used in the deriv routine  
type,extends(rk4_class) :: spacecraft  
    real(wp) :: mu = zero ! central body gravitational  
                          ! parameter (km^3/s^2)  
end type spacecraft

integer,parameter :: n=6 !number of state variables  
type(spacecraft) :: s  
real(wp) :: t0,tf,x0(n),dt,xf(n)

!constructor:  
s = spacecraft(n=n,f=twobody,mu=398600.436233_wp) !main body is Earth

!initial conditions:  
x0 = [10000.0_wp,10000.0_wp,10000.0_wp,& !initial state [x,y,z] (km)  
      1.0_wp,2.0_wp,3.0_wp]              !              [vx,vy,yz] (km/s)  
t0 = zero !initial time (sec)  
dt = 10.0_wp !time step (sec)  
tf = 1000.0_wp !final time (sec)

call s%integrate(t0,x0,dt,tf,xf)  
write(*,'(A/,*(F15.6/))') 'Final state:',xf

contains

subroutine twobody(me,t,x,xdot)  
! derivative routine for two-body orbit propagation

implicit none

class(rk_class),intent(inout) :: me  
real(wp),intent(in) :: t  
real(wp),dimension(me%n),intent(in) :: x  
real(wp),dimension(me%n),intent(out) :: xdot

real(wp),dimension(3) :: r,v,a_grav  
real(wp) :: rmag

select type (me)  
class is (spacecraft)

    r = x(1:3)  
    v = x(4:6)  
    rmag = norm2(r)  
    a_grav = -me%mu/rmag**3 * r !accel. due to gravity

    xdot(1:3) = v  
    xdot(4:6) = a_grav

end select

end subroutine twobody

end program main  

The result is:

 Final state: 10667.963305 11658.055962 12648.148619 0.377639 1.350074 2.322509

See also

  1. Object-Oriented Programming in Fortran 2003 Part 1: Code Reusability, PGI Insider, Feb. 2011.
  2. Object-Oriented Programming in Fortran 2003 Part 2: Data Polymorphism, PGI Insider, June 2011.
  3. Fortran Astrodynamics Toolkit (Github)