Degenerate Conic

Algorithms • Modern Fortran Programming • Orbital Mechanics

Jun 29, 2014

Cartesian to Geodetic

For many years, I have used the closed-form solution from Heikkinen [1] for converting Cartesian coordinates to geodetic latitude and altitude. I've never actually seen the original reference (which is in German). I coded up the algorithm from the table given in [2], and have used it ever since, in school and also at work. At one point I compared it with various other closed-form algorithms, and never found one that was faster and still had the same level of accuracy. However, I recently happened to stumble upon Olson's method [3], which seems to be better.

A Fortran implementation of Olson's algorithm is:

pure subroutine olson(rvec, a, b, h, lon, lat)

    use, intrinsic :: iso_fortran_env, wp=>real64 !double precision

    implicit none

    real(wp),dimension(3),intent(in) :: rvec !position vector [km]
    real(wp),intent(in)  :: a   ! geoid semimajor axis [km]
    real(wp),intent(in)  :: b   ! geoid semiminor axis [km]
    real(wp),intent(out) :: h   ! geodetic altitude [km]
    real(wp),intent(out) :: lon ! longitude [rad]
    real(wp),intent(out) :: lat ! geodetic latitude [rad]

    real(wp) :: f,x,y,z,e2,a1,a2,a3,a4,a5,a6,w,zp,&
                w2,r2,r,s2,c2,u,v,s,ss,c,g,rg,rf,m,p,z2

    x = rvec(1)
    y = rvec(2)
    z = rvec(3)
    f = (a-b)/a
    e2 = f * (2.0_wp - f)
    a1 = a * e2
    a2 = a1 * a1
    a3 = a1 * e2 / 2.0_wp
    a4 = 2.5_wp * a2
    a5 = a1 + a3
    a6 = 1.0_wp - e2
    zp = abs(z)
    w2 = x*x + y*y
    w = sqrt(w2)
    z2 = z * z
    r2 = z2 + w2
    r = sqrt(r2)

    if (r < 100.0_wp) then

        lat = 0.0_wp
        lon = 0.0_wp
        h = -1.0e7_wp

    else

        s2 = z2 / r2
        c2 = w2 / r2
        u = a2 / r
        v = a3 - a4 / r

        if (c2 > 0.3_wp) then
            s = (zp / r) * (1.0_wp + c2 * (a1 + u + s2 * v) / r)
            lat = asin(s)
            ss = s * s
            c = sqrt(1.0_wp - ss)
        else
            c = (w / r) * (1.0_wp - s2 * (a5 - u - c2 * v) / r)
            lat = acos(c)
            ss = 1.0_wp - c * c
            s = sqrt(ss)
        end if

        g = 1.0_wp - e2 * ss
        rg = a / sqrt(g)
        rf = a6 * rg
        u = w - rg * c
        v = zp - rf * s
        f = c * u + s * v
        m = c * v - s * u
        p = m / (rf / g + f)
        lat = lat + p
        if (z < 0.0_wp) lat = -lat
        h = f + m * p / 2.0_wp
        lon = atan2( y, x )

    end if

end subroutine olson

For comparison, Heikkinen's algorithm is:

pure subroutine heikkinen(rvec, a, b, h, lon, lat)

    use, intrinsic :: iso_fortran_env, wp=>real64 !double precision

    implicit none

    real(wp),dimension(3),intent(in) :: rvec !position vector [km]
    real(wp),intent(in)  :: a    ! geoid semimajor axis [km]
    real(wp),intent(in)  :: b    ! geoid semiminor axis [km]
    real(wp),intent(out) :: h    ! geodetic altitude [km]
    real(wp),intent(out) :: lon  ! longitude [rad]
    real(wp),intent(out) :: lat  ! geodetic latitude [rad]

    real(wp) :: f,e_2,ep,r,e2,ff,g,c,s,pp,q,r0,u,v,z0,x,y,z,z2,r2,tmp,a2,b2

    x = rvec(1)
    y = rvec(2)
    z = rvec(3)
    a2 = a*a
    b2 = b*b
    f = (a-b)/a
    e_2 = (2.0_wp*f-f*f)
    ep = sqrt(a2/b2 - 1.0_wp)
    z2 = z*z
    r = sqrt(x**2 + y**2)
    r2 = r*r
    e2 = a2 - b2
    ff = 54.0_wp * b2 * z2
    g = r2 + (1.0_wp - e_2)*z2 - e_2*e2
    c = e_2**2 * ff * r2 / g**3
    s = (1.0_wp + c + sqrt(c**2 + 2.0_wp*c))**(1.0_wp/3.0_wp)
    pp = ff / ( 3.0_wp*(s + 1.0_wp/s + 1.0_wp)**2 * g**2 )
    q = sqrt( 1.0_wp + 2.0_wp*e_2**2 * pp )
    r0 = -pp*e_2*r/(1.0_wp+q) + &
        sqrt( max(0.0_wp, 1.0_wp/2.0_wp * a2 * (1.0_wp + 1.0_wp/q) - &
        ( pp*(1.0_wp-e_2)*z2 )/(q*(1.0_wp+q)) - &
        1.0_wp/2.0_wp * pp * r2) )
    u = sqrt( (r - e_2*r0)**2 + z2 )
    v = sqrt( (r - e_2*r0)**2 + (1.0_wp - e_2)*z2 )
    z0 = b**2 * z / (a*v)
    h = u*(1.0_wp - b2/(a*v) )
    lat = atan2( (z + ep**2*z0), r )
    lon = atan2( y, x )

end subroutine heikkinen

Olson's is about 1.5 times faster on my 2.53 GHz i5 laptop, when both are compiled using gfortran with -O2 optimization (Olson: 3,743,212 cases/sec, Heikkinen: 2,499,670 cases/sec). The level of accuracy is about the same for each method.

References

  1. M. Heikkinen, "Geschlossene formeln zur berechnung raumlicher geodatischer koordinaten aus rechtwinkligen Koordinaten". Z. Ermess., 107 (1982), 207-211 (in German).
  2. E. D. Kaplan, "Understanding GPS: Principles and Applications", Artech House, 1996.
  3. D. K. Olson, "Converting Earth-Centered, Earth-Fixed Coordinates to Geodetic Coordinates," IEEE Transactions on Aerospace and Electronic Systems, 32 (1996) 473-476.

Jun 28, 2014

JSON + Fortran

Introducing json-fortran, an easy-to-use JSON API written in modern Fortran. As far as I know, it's currently the only publicly-available production-ready JSON API for Fortran that does not involve an interface to C libraries. The code is hosted at GitHub, and is released under a BSD-style license.

Fortran users may find JSON quite useful as a configuration file format. Typically, large and complicated Fortran codes (say, in the fields of climate modeling or trajectory optimization) require data to be read from configuration files. JSON has many advantages over a roll-your-own file format, or a Fortran namelist, namely:

  • It's a standard.
  • It's human-readable and human-editable.
  • API's exist for many other programming languages.

Consider the example of a program to propagate a spacecraft state vector. The required information is the initial time t0, step size dt, final time tf, central body gravitational parameter mu, and the 6-element state vector x0. The JSON configuration file might look something like this:

{  
  "t0": 0.0,  
  "dt": 1.0,  
  "tf": 86400.0,  
  "mu": 398600.4418,  
  "x0": [ 10000.0,  
         10000.0,  
         10000.0,  
        1.0,  
         2.0,  
         3.0  
  ]  
}  

The code would look something like this:

program propagate

use json_module

implicit none

real(wp) :: t0, dt, tf, mu  
real(wp),dimension(:),allocatable :: x0  
type(json_file) :: config  
logical :: found

!load the file:  
call config%load_file('config.json')

!read in the data:  
call config%get('t0',t0,found)  
call config%get('dt',dt,found)  
call config%get('tf',tf,found)  
call config%get('mu',mu,found)  
call config%get('x0',x0,found)

!propagate:  
! ...

end program propagate  

Of course, real production code would have more graceful error checking. For example, to make sure the file was properly parsed and that each variable was really present. These features are included in the API, including helpful error messages if something goes wrong.

Jun 26, 2014

← Previous Page 14 of 14